Forecasting with Model Uncertainty: Representations and Risk Reduction∗

نویسندگان

  • Keisuke Hirano
  • Jonathan H. Wright
  • Russell Davidson
  • Gary Chamberlain
  • Sylvia Gonçalves
  • Bruce Hansen
  • Serena Ng
  • Peter Phillips
چکیده

We consider forecasting with uncertainty about the choice of predictor variables. The researcher wants to select a model, estimate the parameters, and use this for forecasting. We investigate the distributional properties of a number of different schemes for model choice and parameter estimation: in-sample model selection using the Akaike information criterion, out-of-sample model selection, and splitting the data into subsamples for model selection and parameter estimation. Using a weakpredictor local asymptotic scheme, we provide a representation result that facilitates comparison of the distributional properties of the procedures and their associated forecast risks. We develop a simulation procedure that improves the accuracy of the out-of-sample and split-sample methods uniformly over the local parameter space. We also examine how bootstrap aggregation (bagging) affects the local asymptotic risk of the estimators and their associated forecasts. Numerically, we find that for many values of the local parameter, the out-of-sample and split-sample schemes perform poorly if implemented in the conventional way. But they perform well, if implemented in conjunction with our risk-reduction method or bagging. ∗We are grateful to Don Andrews, Marine Carrasco, Russell Davidson, Gary Chamberlain, Sylvia Gonçalves, Bruce Hansen, Serena Ng, Peter Phillips, and Jack Porter for very helpful discussions. The usual disclaimer applies. †Department of Economics, University of Arizona, 1130 E. Helen St., Tucson AZ 85721. Email: [email protected] ‡Department of Economics, Johns Hopkins University, 3400 North Charles St., Baltimore MD 21218. Email: [email protected] 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating real-time predictive hydrological uncertainty

Flood risk can be reduced by means of flood forecasting, warning and response systems (FFWRS). These systems include a forecasting subsystem which is imperfect, meaning that inherent uncertainties in hydrological forecasts may result in false alarms and missed events. This forecasting uncertainty decreases the potential reduction of flood risk, but is seldom accounted for in estimates of the be...

متن کامل

An Approach for Accident Forecasting Using Fuzzy Logic Rules: A Case Mining of Lift Truck Accident Forecasting in One of the Iranian Car Manufacturers

Fuzzy Logic is one of the concepts that has created different scientific attitudes by entering into various professional fields nowadays and in some cases has made remarkable effects on the results of the practical researches. However, the existence of stochastic and uncertain situations in risk and accident field, affects the possibility of the forecasting and preventing the occurrence of the ...

متن کامل

Presenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets

Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...

متن کامل

The Effect of Uncertainty of Macroeconomic Indicators on Tehran Stock Exchange Return With an Approach of the TVP-SV Model

One of the most important duties of financial economy is modeling and forecasting the volatilities of price of risky assets. From analysts and policy makers’ view, price volatility is a key variable contributing to perception of market volatilities. Therefore, analysts need to have an appropriate of forecast of price volatility as a necessary input to perform duties such as risk management, por...

متن کامل

Forecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models

Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015